Observation of absorption bands due to the $4 \mathrm{f}^{7} \rightarrow 4 \mathrm{f}^{7}$ parity-forbidden transitions of ${ }^{\mathrm{Eu}^{2+}}$ ions in KMgF_{3} crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys.: Condens. Matter 107259
(http://iopscience.iop.org/0953-8984/10/32/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.209
The article was downloaded on 14/05/2010 at 16:40

Please note that terms and conditions apply.

Observation of absorption bands due to the $4 \mathbf{f}^{7} \rightarrow \mathbf{4 f}{ }^{7}$ parity-forbidden transitions of $\mathbf{E u}^{2+}$ ions in $\mathbf{K M g F}_{3}$ crystals

Taiju Tsuboi $\dagger \S \|$ and Augusto Scacco \ddagger đ
\dagger Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
\ddagger Department of Physics and INFM, University of Rome 'La Sapienza', P le Aldo Moro 2, 00185 Rome, Italy

Received 23 April 1998

Abstract

Optical absorption and magnetic circular dichroism spectra of Eu^{2+} ions in KMgF_{3} crystals have been measured. The fine structure of the absorption bands due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ transitions in the spin- and parity-forbidden $4 \mathrm{f}^{7} \rightarrow 4 \mathrm{f}^{7}$ intraconfigurational electronic transition has been studied at different temperatures. By comparison with the onephoton and two-photon excitation spectra for the luminescence due to the ${ }^{6} \mathrm{P}_{7 / 2} \rightarrow{ }^{8} \mathrm{~S}_{7 / 2}$ transition, it is shown that the fine structure consists of the absorption peaks due to three kinds of Eu^{2+} ion which substitutes K^{+}ions but have different site symmetries, i.e. the cubic, tetragonal and trigonal symmetries.

1. Introduction

$E u^{2+}$ ion has the electronic configuration $4 f^{7} 5 s^{2} 5 p^{6}$ (denoted f^{7} hereafter) in the outer shell in the ground state and $4 f^{6} 5 s^{2} 5 p^{6} 5 d$ (denoted $f^{6} d$) in the first excited state. The interconfigurational electronic $\mathrm{f}^{7} \rightarrow \mathrm{f}^{6} \mathrm{~d}$ transition is parity allowed, while the intraconfigurational $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ transition is parity forbidden and the electric dipole transition is not allowed [1]. The optical absorption bands due to the latter transition of Eu^{2+} appear to lie quite close to the very intense bands due to the former transition. Therefore it is difficult to obtain clear evidence of the $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ absorption bands because of their considerably weak intensity. So far, the $\mathrm{f}^{7}\left({ }^{8} \mathrm{~S}_{7 / 2}\right) \rightarrow \mathrm{f}^{7}$ absorption bands have been reported only in crystals of $\mathrm{CaF}_{2}: \mathrm{Eu}^{2+}$ [2] and $\mathrm{SrAlF}_{5}: \mathrm{Eu}^{2+}$ [3], without detailed description and analysis.

Unlike the case of the absorption spectrum, the $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ transition has been observed clearly in the one-photon excitation and two-photon excitation spectra for the luminescence due to the transition from the excited f^{7} state (e.g. ${ }^{6} \mathrm{P}_{7 / 2}$ state) or $\mathrm{f}^{6} \mathrm{~d}$ state to the ground $\mathrm{f}^{7}\left({ }^{8} \mathrm{~S}_{7 / 2}\right)$ state. Indeed in the case of the two-photon excitation process, in which the Eu^{2+} ion is raised from the ground state to the excited f^{7} state by simultaneous absorption of two photons of light, such an intraconfigurational transition is electric dipole allowed, giving rise to a large transition probability. The one- and two-photon excitation spectra, however, give indirect information about the $\mathrm{f}^{7}\left({ }^{8} \mathrm{~S}_{7 / 2}\right) \rightarrow \mathrm{f}^{7}$ transition because they are obtained through the luminescence process where the excited electron is relaxed to the lowest excited state $\mathrm{f}^{7}\left({ }^{6} \mathrm{P}_{7 / 2}\right)$ after the excitation and then it is returned to the ground state. In order to obtain
§ E-mail address: tsuboi@cc.kyoto-su.ac.jp.
$\|$ Correspondence to Dr T Tsuboi, 4-4-4 Hiyoshidai, Otsu, Shiga-ken 520-0112, Japan.
【 E-mail address: scacco@axcasp.caspur.it.
direct information about the $\mathrm{f}^{7}\left({ }^{8} \mathrm{~S}_{7 / 2}\right) \rightarrow \mathrm{f}^{7}$ transition, the optical absorption (i.e. onephoton absorption) itself should be investigated.

In KMgF_{3} the excited f^{7} states of the Eu^{2+} ion lie at much lower energy with respect to the $\mathrm{f}^{6} \mathrm{~d}$ states than in other ionic crystals such as CaF_{2} and alkali halides [1]. Therefore, unlike the cases of other crystals, it should be possible to observe the $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ absorption spectrum separated from the intense $\mathrm{f}^{7} \rightarrow \mathrm{f}^{6} \mathrm{~d}$ absorption spectrum clearly in KMgF_{3}. So far such a spectrum has not been reported. In this paper we study the $f^{7} \rightarrow f^{7}$ absorption spectrum in $\mathrm{KMgF}_{3}: \mathrm{Eu}^{2+}$ crystals and compare it with the one- and two-photon excitation spectra previously observed [4-6].

2. Experimental procedures

Single crystals of KMgF_{3} containing various concentrations of Eu^{2+} ions were grown by the Kyropoulos method. Europium ions were added as EuCl_{3} in the stoichiometric mixtures of KF and MgF_{2} dehydrated powders. Previous experiments showed that doping with Eu^{3+} ions of KMgF_{3} is extremely difficult if the crystal growth is not carried out in an oxidizing atmosphere [7]. This is evidently caused by a quantitative reduction process to Eu^{2+} ions during the incorporation in the perovskite lattice, which therefore contains practically only divalent ions of the dopant. In the present study, we used a crystal, grown from a melt containing $1.1 \mathrm{~mol} \%$ of Eu^{2+} ions, which is sufficiently doped to observe the weak $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ absorption bands.

Absorption spectra were measured using a Cary-5E spectrophotometer at various temperatures in the range $15-300 \mathrm{~K}$. MCD (magnetic circular dichroism) spectra were measured using a JASCO J-40A spectropolarimeter. The slit widths of the Cary and JASCO spectrometers were normally set to be 0.05 and 0.3 nm , respectively. In the high-resolution measurement (shown by curve a of figures 3 and 4) the slit width of the Cary spectrometer was set to be 0.02 nm .

3. Experimental results

The absorption spectrum of $\mathrm{KMgF}_{3}: \mathrm{Eu}^{2+}$ ($1.1 \mathrm{~mol} \%$ in the melt) at room temperature is shown in figure 1. An intense absorption band due to the $\mathrm{f}^{7} \rightarrow \mathrm{f}^{6} \mathrm{~d}$ dipole-allowed transition is observed in the region $30000-45000 \mathrm{~cm}^{-1}$. Additionally two very weak absorption bands are observed at the low energy side of the intense band. Their peaks are at 27830 and $28251 \mathrm{~cm}^{-1}$ (the corresponding wavelengths are about 359.3 and 353.9 nm , respectively) at 296 K. The $27830 \mathrm{~cm}^{-1}$ band is more intense than the $28251 \mathrm{~cm}^{-1}$ band. From comparison with the previous studies of luminescence [5,6], the weak bands are attributed to the $f^{7} \rightarrow f^{7}$ absorption: the lower-energy band is attributed to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ transition, while the higher-energy one to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ transition.

Figure 2 shows the absorption spectrum of these weak bands at 16 K . Their positions are shifted towards higher energies when temperature is decreased from room temperature, e.g. the $27830 \mathrm{~cm}^{-1}$ peak is shifted to $27846 \mathrm{~cm}^{-1}$ at 16 K as shown in the inset of figure 2 . The absorption intensities (i.e. integrated absorption areas) of these bands are little changed by the decrease of temperature, but it is observed that the bands become narrower with decreasing temperature (see the inset of figure 2). At 16 K the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ band consists of three bands at 27827,27837 and $27846 \mathrm{~cm}^{-1}$, while the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ band consists of two bands at 28262 and $28270 \mathrm{~cm}^{-1}$. Their enlarged spectra are shown in curve a of figures 3 and 4. The one-photon absorption spectrum due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ transition

Figure 1. Absorption spectra of a $\mathrm{KMgF}_{3}: \mathrm{Eu}^{2+}(1.1 \mathrm{~mol} \%$ in the melt $)$ crystal at 296 K . The crystal thickness is 1.98 mm . The absorption band due to the $4 f^{7} \rightarrow 4 f^{6} \mathrm{~d}$ transition (curve a) is shown in a reduced scale.

Figure 2. Absorption bands due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{6} \mathrm{P}_{5 / 2}$ transitions in $4 \mathrm{f}^{7} \rightarrow 4 \mathrm{f}^{7}$ parityforbidden transitions of Eu^{2+} ions in KMgF_{3} crystal at 16 K . Inset shows the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ band at 16 and 296 K . ABS. COEFF. means absorption coefficient.
is quite similar to the observed corresponding one- and two-photon excitation spectra $[5,6]$ for the luminescence due to ${ }^{6} \mathrm{P}_{7 / 2} \rightarrow{ }^{8} \mathrm{~S}_{7 / 2}$ transition in the lineshape and peak positions as shown in figure 3.

Regarding the spectrum due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ transition, we observed an absorption band at $28253 \mathrm{~cm}^{-1}$, while it is not seen in the two-photon excitation spectrum [5] because the measurement was made in a limited range of $28259-28274 \mathrm{~cm}^{-1}$. The observation

Figure 3. Fine structure of the absorption band (curve a) due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ transition of Eu^{2+} ions in KMgF_{3} at 16 K , compared with the one-photon excitation spectrum in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ spectral range (curve b, obtained by Ellens et al [6]) for the luminescence due to ${ }^{6} \mathrm{P}_{7 / 2} \rightarrow{ }^{8} \mathrm{~S}_{7 / 2}$ transition at 4.2 K and compared with the two-photon excitation spectrum (curve c, obtained by Francini et al [5]) for the luminescence at $15 \mathrm{~K} . \Gamma_{6}$ means the Γ_{6} symmetry absorption band due to Eu^{2+} at the cubic lattice site. Tr means the absorption bands due to the trigonal $\mathrm{Eu}^{2}+$ ion.
of the $28253 \mathrm{~cm}^{-1}$ band is in agreement with the result of one-photon excitation spectra measured by Altshuler et al [4] and Ellens et al [6]. Our one-photon absorption lineshape in the range of $28258-28280 \mathrm{~cm}^{-1}$ is different from the spectrum of Altshuler et al regarding the peak-height ratio among the observed bands, as seen in figure 4 . Our lineshape, however, is quite similar to the spectrum of Ellens et al.

Since the resolution of the MCD spectrometer is 0.3 nm (poorer than the case of the Cary-5E absorption spectrophotometer), it is difficult to observe the correspondence of the MCD lineshape with the absorption spectra of figures 3 and 4. The MCD lineshape is observed to be similar to the absorption lineshape which is obtained using the same MCD spectrometer. Like the case of the absorption spectra, the other $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ absorption bands such as ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{3 / 2}$ and ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{I}$ bands were not observed in the MCD spectra.

4. Discussion

The Eu^{2+} ion has an ionic radius of $1.12 \AA$, while K^{+}and Mg^{2+} have radii of 1.33 and $0.65 \AA$, respectively. Therefore it is assumed that the Eu^{2+} substitutes for the singlycharged K^{+}with a 12 -fold F^{-}coordination in the KMgF_{3} lattice as shown in figure 5 . In this case the charge-compensating positive ion vacancy is necessary and it is expected to be located at one of the K^{+}sites around the Eu^{2+} ion, giving rise to Eu^{2+} complexes with axial symmetry. If the vacancy is present at one of the nearest-neighbour K^{+}sites in the $\langle 100\rangle$ axis (e.g. the site A of figure 5), the site symmetry of Eu^{2+} is tetragonal $\mathrm{C}_{4 \mathrm{v}}$, and if the vacancy is located at one of the third- or second-nearest-neighbour K^{+}sites in the $\langle 111\rangle$ or $\langle 110\rangle$ axis (e.g. the site C or B), respectively, the site symmetry is trigonal $\mathrm{C}_{3 \mathrm{v}}$ or $\mathrm{C}_{2 \mathrm{v}}$. Francini et al including one (AS) of the present authors have attributed three

Figure 4. Fine structure of the absorption band (curve a) due to the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ transition of Eu^{2+} ions in KMgF_{3} at 16 K , compared with the one-photon excitation spectrum in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ spectral range (curve b , obtained by Altshuler et al [4]) at 77 K and compared with the two-photon excitation spectrum (curve c, obtained by Francini et al [5]) for the luminescence at 359 nm which is due to ${ }^{6} \mathrm{P}_{7 / 2} \rightarrow{ }^{8} \mathrm{~S}_{7 / 2}$ transition at $15 \mathrm{~K} . \Gamma_{6}$ means the Γ_{6} symmetry absorption band due to Eu^{2+} at the cubic lattice site. Tr means the absorption bands due to the trigonal Eu^{2+} ion.

Figure 5. Crystal structure of KMgF_{3} with Eu^{2+} ion. The lattice site A, B or C indicates a possible position of the charge-compensating positive ion vacancy.
lines (at $27840.3,27845.8$ and $27847.3 \mathrm{~cm}^{-1}$) observed in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ two-photon spectrum to the Eu^{2+} ion at cubic site and four lines (at $27835.0,27836.8,27841.5$ and $27849.8 \mathrm{~cm}^{-1}$) to the Eu^{2+} at trigonal site from the crystal-field calculation, while two lines (at 28267.0 and $28270.5 \mathrm{~cm}^{-1}$) observed in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ two-photon spectrum to the cubic Eu^{2+} and three lines (at $28261.0,28262.3$ and $28269.7 \mathrm{~cm}^{-1}$) to the trigonal Eu^{2+} [5]. Their assignment is shown in figures 3 and 4.

Besides these lines, there are several intense lines (at $27827,27843,28253$ and $28271 \mathrm{~cm}^{-1}$ lines), which have not been assigned yet: these are shown by arrows in figures 3 and 4. In the electron spin resonance experiment, Eu^{2+} ion at a tetragonal site has been observed in addition to the cubic Eu^{2+} [8]. Therefore it is suggested that these unassigned lines are due to the tetragonal Eu^{2+}. The tetragonal Eu^{2+} gives rise to four and three absorption lines in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ transitions, respectively. Not all of these lines are observed in figures 3 and 4 clearly since it seems that some lines are overlapped with the lines due to the cubic and trigonal Eu^{2+} ions.

These assignments are consistent with the observation of four ${ }^{6} \mathrm{P}_{7 / 2} \rightarrow{ }^{8} \mathrm{~S}_{7 / 2}$ luminescence lines (named A, B, C and D) by Ellens et al, from which they proposed that there are at least four types of Eu^{2+} ion with different site symmetries in KMgF_{3} [6]. They observed three relatively intense A, B and D luminescence lines and one considerably weak C line (see figure 3 of [6]). Therefore it is suggested that the a-, b- and d-site $E u^{2+}$ ions are more populated than the c-site Eu^{2+} (here we call Eu^{2+} ions which give rise to the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D lines $\mathrm{a}-, \mathrm{b}-, \mathrm{c}$ - and d-site Eu^{2+} ions, respectively) and the A, B and D lines are caused by the cubic, trigonal and tetragonal symmetry Eu^{2+} ions although at this moment we cannot determine which luminescence line belongs to which symmetry Eu^{2+}. Besides the above-mentioned 27835.0 , $27836.8,27840.3,27841.5,27845.8,27847.3$, $27849.8,28261.0,28262.3,28267.0,28269.7,28270.5 \mathrm{~cm}^{-1}$ and $27827,27843,28253$, $28271 \mathrm{~cm}^{-1}$ excitation lines, there are very weak lines in figures 3 and 4 (e.g. a line at $27829 \mathrm{~cm}^{-1}$), which have not been assigned yet. These weak lines are probably due to the remaining minor c-site Eu^{2+}.
Eu^{2+} ion is present in alkali halide crystals with NaCl structure [1]. The Eu^{2+} ion enters the lattice substitutionally at the alkali ion site which possesses octahedral symmetry. Like the case of $\mathrm{KMgF}_{3}: \mathrm{Eu}^{2+}$, the substitutional Eu^{2+} is accompanied by a charge-compensating cation vacancy in one of the nearby alkali ion sites in alkali halides. If the vacancy is at one of the next-nearest-neighbour sites along the $\langle 110\rangle$ directions (i.e. one of the nearestneighbour alkali ion sites), the symmetry of the Eu^{2+} environment is $\mathrm{C}_{2 \mathrm{v}}$. This is consistent with the observation of four lines in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ transition by two-photon excitation spectroscopy [9-11]. That is to say, four absorption lines due to $\mathrm{C}_{2 \mathrm{v}}$-symmetry Eu^{2+} have been observed, but absorption lines due not only to octahedral Eu^{2+} (where vacancy is located far from the Eu^{2+} site) but also to other low-symmetry Eu^{2+} accompanied by a vacancy at the second- or third-nearest-neighbour cation site are not observed. This indicates that, unlike the case of KMgF_{3}, only the $\mathrm{C}_{2 \mathrm{v}}$ symmetry Eu^{2+} ion with a vacancy at the nearest-neighbour cation site is present in alkali halides, and the other symmetry Eu ${ }^{2+}$ ions are not present. This is reasonable, since the $\mathrm{C}_{2 \mathrm{v}}$ site-symmetry Eu^{2+} has a stronger coupling with the vacancy than that of Eu^{2+} with the other site symmetries because of the shortened distance between the vacancy and Eu^{2+}. In the case of KMgF_{3} both Eu^{2+} ions with and without vacancy are present simultaneously and additionally different types of vacancy-accompanied Eu^{2+} ion (with trigonal and tetragonal site symmetries) coexist in the crystal. Why does such a difference occur in KMgF_{3} ?

A possible explanation is that the location of the vacancy is not critical in KMgF_{3}. The vacancy is not necessarily located at the nearest-neighbour site, and therefore Eu^{2+} ions with various kinds of local site symmetry can be present. If the vacancy is far from the Eu^{2+} site, the site symmetry can be assumed to be cubic although it is not exactly so. It seems that in monovalent crystals, such as alkali halides, the charge compensating vacancy is required to be located considerably close to the impurity to form a stable Eu^{2+}-vacancy dipole, while the formation of such an Eu^{2+}-vacancy dipole is not necessary in the KMgF_{3} crystal, leading to the coexistence of various Eu^{2+} ions with different site symmetries. The
reason why, unlike the case of alkali halides, the vacancy is allowed to locate at various K^{+}sites in KMgF_{3} is suggested as follows. In KMgF_{3}, besides the dopant $\mathrm{Eu}^{2+}, \mathrm{Mg}^{2+}$ is also present in the crystal, and as a consequence the positive ion vacancy is expected to be attracted by these two divalent ions with almost the same force. Therefore it should be deduced that the result of this competition is that the vacancy is not necessarily located at the nearest-neighbour K^{+}site, which produces the strongest vacancy-Eu ${ }^{2+}$ coupling, and a mixture of vacancies at different locations around Eu^{2+} is easily generated.

The ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{3 / 2}$ band is not observed but the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ bands are observed, suggesting that the selection rule $\Delta J=0,1$ (J : quantum number of total angular momentum) strictly holds for these $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ transitions. This seems to indicate that these parity- and spin-forbidden $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ bands are caused by magnetic dipole transitions. However, taking into account that Eu^{2+} with a vacancy has a non-inversion trigonal or tetragonal symmetry, the electric dipole transition is made allowed by a symmetry breaking phonon which gives rise to mixing of the $4 f^{7}$ state with the odd-parity $4 f^{6} 5 d$ state. Since it is observed that the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{5 / 2}$ bands become broader as temperature is increased, it is suggested that the broadening is due to the line-width of the symmetry breaking phonon.

An absorption-like MCD lineshape is observed for each of the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{6} \mathrm{P}_{5 / 2}$ bands although the resolution is poor when compared with the absorption spectra of figures 3 and 4. This indicates that the MCD mainly comes from a paramagnetic term, arising from impurity which has an unpaired electron [12]. This is consistent with the fact that Eu^{2+} ion has f^{7} electron configuration in the ground state.

5. Conclusion

The one-photon absorption spectra due to parity- and spin-forbidden $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ transition have been observed in $\mathrm{KMgF}_{3}: \mathrm{Eu}^{2+}$ crystal clearly. In CaF_{2} and LiBaF_{3} crystals where Eu^{2+} substitutes for cubic-symmetry Ca^{2+} and Ba^{2+} ions, respectively, no charge compensating vacancy is necessary, and three and two Eu^{2+} lines have been observed in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{6} \mathrm{P}_{5 / 2}$ band spectra [13-15]. Unlike the cases of CaF_{2} and LiBaF_{3}, at least 11 and seven lines are observed in the ${ }^{8} \mathrm{~S}_{7 / 2} \rightarrow{ }^{6} \mathrm{P}_{7 / 2}$ and ${ }^{6} \mathrm{P}_{5 / 2}$ band spectra in KMgF_{3} doped with Eu^{2+} which substitutes for the cubic-symmetry K^{+}ion, respectively. It is suggested that the Eu^{2+} spectra observed in KMgF_{3} consist of absorption lines due to Eu^{2+} ions with different site symmetries, i.e. cubic, trigonal and tetragonal ones. From the line broadening and its temperature dependence, it is shown that the $\mathrm{f}^{7} \rightarrow \mathrm{f}^{7}$ absorption is caused by the electricdipole transition which is made allowed by mixing of $4 f^{7}$ state with $4 f^{6} 5 d$ state due to the symmetry breaking phonon.

Acknowledgment

The authors would like to thank Mr C Sanipoli for growing all crystals used in this study.

References

[1] Rubio O J 1991 J. Phys. Chem. Solids 52101
[2] Low W 1960 Nuovo Cimento 17607
[3] Meehan J P and Wilson E J 1972 J. Crystal Growth 15141
[4] Altshuler N S, Livanova L D and Stolov A L 1974 Opt. Spectrosc. 3672
[5] Francini R, Grassano U M, Tomini M, Boiko S, Tarasov G G and Scacco A 1997 Phys. Rev. B 557579
[6] Ellens A, Meijerink A and Blasse G 1994 J. Lumin. 59293
[7] Bacci C, Fioravanti S, Furetta C, Missori M, Ramogida G, Rossetti R, Sanipoli C and Scacco A 1993 Radiat. Prot. Dosim. 47277
[8] Altshuler N S, Ivoilova E Kh, Livanova L D, Stepanov V G and Stolov A L 1974 Sov. Phys.-Solid State 15 1973
[9] Casalboni M, Francini R, Grassano U M and Pizzoferrato R 1986 Phys. Rev. B 342936
[10] Casalboni M, Francini R, Grassano U M and Pizzoferrato R 1987 Cryst. Latt. Defects Amorph. Mater. 16 261
[11] Nunes L A O, Matinaga F M and Castro J C 1985 Phys. Rev. B 328356
[12] Ito H and Onaka R 1997 J. Phys. Soc. Japan 43390
[13] Downer M C, Cordero-Montalvo C D and Crosswhite H 1983 Phys. Rev. B 284931
[14] Dujardin C, Moine B and Pedrini C 1993 J. Lumin. 54259
[15] Meijerink A 1993 J. Lumin. 55125

